Lower Body Pose Estimation in Team Sports Videos Using Label-Grid Classifier Integrated with Tracking-by-Detection

نویسندگان

  • Masaki Hayashi
  • Kyoko Oshima
  • Masamoto Tanabiki
  • Yoshimitsu Aoki
چکیده

We propose a human lower body pose estimation method for team sport videos, which is integrated with tracking-by-detection technique. The proposed Label-Grid classifier uses the grid histogram feature of the tracked window from the tracker and estimates the lower body joint position of a specific joint as the class label of the multiclass classifiers, whose classes correspond to the candidate joint positions on the grid. By learning various types of player poses and scales of Histogram-of-Oriented Gradients features within one team sport, our method can estimate poses even if the players are motion-blurred and low-resolution images without requiring a motion-model regression or part-based model, which are popular vision-based human pose estimation techniques. Moreover, our method can estimate poses with part-occlusions and non-upright side poses, which part-detector-based methods find it difficult to estimate with only one model. Experimental results show the advantage of our method for side running poses and non-walking poses. The results also show the robustness of our method for a large variety of poses and scales in team sports videos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Body Pose Estimation for Team Sports Videos Using a Poselet-Regressor of Spine Pose and Body Orientation Classifiers Conditioned by the Spine Angle Prior

We propose a per-frame upper body pose estimation method for sports players captured in low-resolution team sports videos. Using the head-center-aligned upper body region appearance in each frame from the head tracker, our framework estimates (1) 2D spine pose, composed of the head center and the pelvis center locations, and (2) the orientation of the upper body in each frame. Our framework is ...

متن کامل

Does Human Action Recognition Benefit from Pose Estimation?

Introduction The earliest works in action recognition focused on tracking body parts and classifying the joint movements. These pose-based approaches, while straight-forward, require accurate tracking of body parts, which is a challenging task in its own right. As recent trends in action recognition have shifted towards natural and unconstrained videos (e.g. films, broadcast sports, Youtube vid...

متن کامل

Improve Accurate Pose Alignment and Action Localization by Dense Pose Estimation

In this work we explore the use of shape-based representations as an auxiliary source of supervision for pose estimation. We show that shape-based representations can act as a source of ‘privileged information’ that complements and extends the pure landmark-level annotations. We explore 2D shape-based supervision signals, such as Support Vector Shape. Our experiments show that shape-based super...

متن کامل

Multi-target tracking in team-sports videos via multi-level context-conditioned latent behaviour models

Multi-target tracking techniques increasingly exploit contextual information about group dynamics. However, approaches established in pedestrian tracking make assumptions about features and motion models which are often inappropriate to sports team tracking, where motion is erratic and players wear similar uniforms with frequent interplayer occlusions. On the other hand, approaches designed spe...

متن کامل

PoseTrack: A Benchmark for Human Pose Estimation and Tracking

Human poses and motions are important cues for analysis of videos with people and there is strong evidence that representations based on body pose are highly effective for a variety of tasks such as activity recognition, content retrieval and social signal processing. In this work, we aim to further advance the state of the art by establishing “PoseTrack” , a new large-scale benchmark for video...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IPSJ Trans. Computer Vision and Applications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015